Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization.
نویسندگان
چکیده
The relationship between 3D organization of the genome and gene-regulatory networks is poorly understood. Here, we examined long-range chromatin interactions genome-wide in mouse embryonic stem cells (ESCs), iPSCs, and fibroblasts and uncovered a pluripotency-specific genome organization that is gradually reestablished during reprogramming. Our data confirm that long-range chromatin interactions are primarily associated with the spatial segregation of open and closed chromatin, defining overall chromosome conformation. Additionally, we identified two further levels of genome organization in ESCs characterized by colocalization of regions with high pluripotency factor occupancy and strong enrichment for Polycomb proteins/H3K27me3, respectively. Underlining the independence of these networks and their functional relevance for genome organization, loss of the Polycomb protein Eed diminishes interactions between Polycomb-regulated regions without altering overarching chromosome conformation. Together, our data highlight a pluripotency-specific genome organization in which pluripotency factors such as Nanog and H3K27me3 occupy distinct nuclear spaces and reveal a role for cell-type-specific gene-regulatory networks in genome organization.
منابع مشابه
Nuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملGenome-wide shRNA screening to identify factors mediating Gata6 repression in mouse embryonic stem cells
The use of whole-genome pooled shRNA libraries in loss-of-function screening in tissue culture models provides an effective means to identify novel factors acting in pathways of interest. Embryonic stem cells (ESCs) offer a unique opportunity to study processes involved in stem cell pluripotency and differentiation. Here, we report a genome-wide shRNA screen in ESCs to identify novel components...
متن کاملPolycomb "polypacks" the chromatin.
For decades, researchers have made a tremendous effort to characterize the chromosome organization in the nucleus. With the development of chromosome conformation capture (1) and related techniques, researchers have begun to gain insight at the molecular level into how interand intrachromosome contacts are formed. Quantitative measurement of the contact frequencies in metazoans suggested the ex...
متن کاملEvaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells
Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...
متن کاملAn embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network.
Distinctive SWI/SNF-like ATP-dependent chromatin remodeling esBAF complexes are indispensable for the maintenance and pluripotency of mouse embryonic stem (ES) cells [Ho L, et al. (2009) Proc Natl Acad Sci USA 10.1073/pnas.0812889106]. To understand the mechanism underlying the roles of these complexes in ES cells, we performed high-resolution genome-wide mapping of the core ATPase subunit, Brg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell stem cell
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2013